Wecome to HeBei ShengShi HongBang Cellulose Technology CO.,LTD.

  • fff1
  • fff2
  • fff3
  • fff4
  • Group 205.webp1
HeBei ShengShi HongBang Cellulose Technology CO.,LTD.
hpmc dextran hydroxypropyl methyl cellulose
hpmc dextran 70 hydroxypropyl methylcellulose
acrylic acid powder

Understanding Redispersible Emulsion Powder: A B2B Perspective In the realm of modern construction and advanced material science, redispersible emulsion powder stands as a cornerstone additive, revolutionizing the performance of dry-mix mortars. This versatile polymer powder, primarily derived from vinyl acetate-ethylene (VAE) copolymers, transforms conventional building materials by enhancing their key properties. Its unique ability to re-emulsify upon contact with water allows it to function as a binding agent within cementitious and gypsum-based formulations, significantly improving adhesion, flexibility, water resistance, and overall durability. For B2B decision-makers and technical engineers, comprehending the intricacies of this material is crucial for optimizing product formulations, ensuring project longevity, and meeting stringent industry standards across diverse applications. Detailed Manufacturing Process of Redispersible Emulsion Powder The production of redispersible emulsion powder is a sophisticated chemical engineering process designed to encapsulate liquid polymer emulsions into a stable, free-flowing powder. This process ensures that the polymer retains its performance characteristics when re-dispersed in water at the point of application. The core materials typically include a liquid polymer emulsion (e.g., VAE emulsion), protective colloids (like polyvinyl alcohol), and anti-caking agents. Process Flow Schematic: 1. Emulsion Polymerization: This initial stage involves the polymerization of monomers (e.g., vinyl acetate and ethylene) in an aqueous medium to form a stable polymer emulsion. Specific catalysts, emulsifiers, and stabilizers are used to control the reaction and ensure desired polymer properties, such as glass transition temperature (Tg) and particle size. 2. Addition of Protective Colloids and Additives: The liquid polymer emulsion is then mixed with protective colloids (e.g., polyvinyl alcohol, cellulose ethers) and other functional additives. These colloids prevent irreversible agglomeration during the subsequent drying process and enable the powder's redispersibility. 3. Spray Drying: This is the most critical step. The prepared emulsion mixture is atomized into a fine mist within a hot air chamber. Rapid evaporation of water leaves behind solid polymer particles encapsulated by the protective colloid, forming a fine, spherical powder. The spray drying parameters (temperature, flow rate, nozzle type) are meticulously controlled to ensure optimal particle morphology and redispersibility. 4. Post-Treatment and Anti-Caking: After spray drying, the powder may undergo further processing, such as cooling. Anti-caking agents (e.g., mineral fillers like calcium carbonate or silicates) are then added to prevent the powder from clumping together during storage and transportation, ensuring its free-flowing nature. 5. Packaging: The final redispersible powder is typically packed in multi-ply paper bags with internal polyethylene liners to protect it from moisture and ensure a long shelf life. Testing Standards: Throughout this process, stringent quality control measures are applied, adhering to international standards such as ISO 9001 for quality management systems. Specific product performance is often evaluated against standards like EN 1504 (for concrete repair products), ASTM C1101 (for dry-mix base coat), and various national standards for bond strength, water retention, flexibility, and impact resistance. These tests ensure the product meets the demanding requirements of various target industries. Target Industries and Service Life: Redispersible latex powder finds extensive use in the construction industry, including infrastructure projects (bridges, tunnels), residential and commercial buildings, and specialized applications like external insulation and finish systems (EIFS), tile adhesives, self-leveling compounds, and repair mortars. The use of high-quality polymer powder significantly extends the service life of these applications by imparting superior adhesion, crack resistance, and durability, often contributing to design lives exceeding 25-50 years for structural elements when properly formulated. Advantages in Typical Application Scenarios: In an EIFS application, for instance, a VAE redispersible emulsion powder enhances the bond between insulation boards and the substrate, improves the flexibility of the base coat to resist thermal stress, and contributes to the system's overall water repellency, leading to energy saving benefits and superior corrosion resistance for the building envelope. Figure 1: Schematic of the Redispersible Emulsion Powder Manufacturing Process. Industry Trends and Market Dynamics for Redispersible Emulsion Powder The global market for redispersible emulsion powder is experiencing robust growth, driven by several key macro and micro-economic factors. Increasing urbanization, particularly in emerging economies, fuels demand for new construction and infrastructure development. Concurrently, a heightened focus on sustainable and green building practices is compelling manufacturers to develop environmentally friendly and high-performance building materials. This trend favors products that improve durability and extend the lifespan of structures, thereby reducing the environmental impact associated with frequent repairs and replacements. Technological advancements are leading to the development of specialized vae redispersible powder with enhanced functionalities, such as improved hydrophobic properties, higher flexibility at low temperatures, and superior open time for tile adhesives. The push for pre-mixed, factory-controlled dry mortars is also a significant trend, as these products offer consistent quality, reduced on-site labor, and minimized material waste. Geographically, Asia-Pacific remains the largest and fastest-growing market due to massive construction activities, while stringent building codes in Europe and North America continue to drive demand for high-performance additives. Figure 2: Global Growth Trends in Construction Additives. Technical Specifications: Redispersible Powder VAE Our Redispersible Powder VAE is engineered to meet rigorous performance requirements across a spectrum of construction applications. Understanding the technical parameters is essential for precise formulation and optimal end-product performance. Below are typical specifications for a high-quality VAE redispersible emulsion powder : Typical Specifications for Redispersible Powder VAE Parameter Unit Typical Value Test Method / Standard Appearance - White, free-flowing powder Visual Inspection Solid Content % ≥ 98.0 ISO 3251 Ash Content % 8.0 - 12.0 DIN 53185 Bulk Density g/L 450 - 650 DIN EN 12351 Particle Size (<250 μm) % ≥ 98.0 EN 12190 Glass Transition Temperature (Tg) °C 0 to +15 (adjustable) DSC (ASTM D3418) Minimum Film Forming Temperature (MFFT) °C 0 ISO 2115 pH Value (10% solution) - 7.0 - 9.0 Electrode Method Viscosity (10% solution) mPa·s 50 - 200 Brookfield Viscometer These parameters directly influence the performance characteristics such as adhesion strength, flexibility, water resistance, and workability of the final dry-mix mortar. For example, a lower Glass Transition Temperature (Tg) generally indicates higher flexibility, making the polymer powder suitable for applications requiring deformation resistance, such as tile adhesives on challenging substrates. Application Scenarios and Technical Advantages The versatility of redispersible emulsion powder allows its integration into a wide array of construction applications, each benefiting from its unique polymer-modified properties. This section highlights typical usage scenarios and the specific technical advantages imparted. Tile Adhesives (C1/C2 Grades): Incorporating redispersible latex powder significantly boosts the bond strength to various substrates (concrete, plasterboard, existing tiles), improves flexibility to accommodate thermal and structural movements, and enhances water resistance, making it ideal for wet areas and external applications. This leads to reduced tile cracking and delamination, extending the service life of tiled surfaces. External Thermal Insulation Composite Systems (ETICS/EIFS): As a critical component in base coats and renders, vae redispersible powder provides excellent adhesion to insulation boards (EPS, mineral wool), improves impact resistance, and imparts crucial flexibility to prevent cracking due to temperature fluctuations. Its hydrophobic characteristics also reduce water absorption, thereby enhancing the system's thermal performance and longevity. Self-Leveling Compounds (SLCs): In SLCs, polymer powder contributes to superior flow properties, allowing for a perfectly smooth and level surface without extensive manual labor. It also increases abrasion resistance, reduces shrinkage, and improves the bond to the subfloor, creating a durable base for various floor coverings. Wall Putties and Skim Coats: Enhances adhesion to diverse substrates, improves workability for smoother application, and increases the hardness and crack resistance of the final surface, preparing it ideally for painting or decorative finishes. Repair Mortars: Crucial for restoring structural integrity, redispersible emulsion powder improves the bond between old and new concrete, enhances compressive and flexural strength, and significantly increases resistance to carbonation and chloride ingress, extending the repair's effectiveness and preventing further degradation. The technical advantages of integrating this specialized redispersible powder include superior adhesion, improved flexural strength, enhanced water repellency, better freeze-thaw stability, increased abrasion resistance, and improved workability and open time for applicators. These benefits translate directly into higher quality construction, reduced maintenance costs, and prolonged structural integrity. Figure 3: Redispersible Emulsion Powder improving adhesion in construction. Vendor Comparison and Customized Solutions Selecting the right supplier for redispersible emulsion powder is paramount for maintaining consistent product quality and ensuring project success. While many vendors offer similar products, differentiation lies in product consistency, technical support, R&D capabilities, and the ability to provide customized solutions. When evaluating potential partners, B2B clients should consider more than just price per kilogram. Comparison of Key Vendor Attributes for Redispersible Emulsion Powder Attribute Standard Vendor Premium/Specialized Vendor Product Consistency Acceptable, with minor batch variations. Highly consistent, stringent QC, tight specification ranges. Technical Support Basic datasheets, limited formulation guidance. Dedicated technical team, on-site support, in-depth formulation advice. Customization Options Limited to standard grades. Extensive R&D, tailored solutions for specific application needs. Certifications ISO 9001 (basic). ISO 9001, ISO 14001, relevant product-specific certifications (e.g., CE, REACH compliance). Lead Time & Logistics Standard lead times, basic shipping. Optimized supply chain, flexible delivery, global distribution network. Customized Solutions: Tailoring Redispersible Powder for Specific Needs The ability to provide customized polymer powder formulations is a hallmark of a leading manufacturer. Customization can involve fine-tuning parameters such as: Glass Transition Temperature (Tg): Adjusting Tg to impart specific flexibility or hardness characteristics for different climatic conditions or substrate types. Particle Size Distribution: Optimizing for specific application needs, such as improved rheology for self-leveling compounds or better open time for tile adhesives. Hydrophobicity: Enhancing water repellency for waterproofing membranes or external renders. Additive Integration: Incorporating specialized additives during the manufacturing process to confer properties like improved freeze-thaw resistance or enhanced adhesion to challenging, non-absorbent substrates. Our company, with extensive years of service and an ISO 9001 certified manufacturing facility, prides itself on working closely with clients to develop tailored redispersible emulsion powder solutions that perfectly match their unique product requirements and market demands. Our authoritative testing methods and robust R&D ensure that custom formulations meet the highest performance and reliability standards. Figure 4: Customization in polymer powder manufacturing. Application Case Studies: Real-World Performance The efficacy of redispersible emulsion powder is best demonstrated through its successful implementation in demanding construction projects. These case studies highlight the tangible benefits and superior performance delivered. Case Study 1: High-Performance Tile Adhesive for a Luxury Hotel A leading hospitality group required a robust tile adhesive for the extensive tiling of a new luxury hotel, including high-traffic lobbies, bathrooms, and a spa area. The project demanded exceptional bond strength, flexibility to accommodate structural shifts, and high water resistance. Our customized VAE redispersible emulsion powder was integrated into a C2TES1 grade tile adhesive formulation. Post-application, tests confirmed a bond strength exceeding 1.5 N/mm² (far exceeding the C2 requirement of 1.0 N/mm²) and excellent deformability (S1 classification), ensuring zero tile detachment or cracking after over three years of intensive use. Customer feedback praised the product's consistent workability and the long-term integrity of the tiled surfaces. Case Study 2: ETICS for a Large-Scale Residential Complex in a Harsh Climate In a large residential complex situated in a region experiencing extreme temperature fluctuations (from -20°C to +40°C), an ETICS solution was critical for energy efficiency and façade protection. Our specialized hydrophobic redispersible powder was used in both the adhesive and base coat layers of the ETICS. After five years, the façade demonstrated exceptional resistance to freeze-thaw cycles, no visible cracks or delamination, and significantly reduced thermal bridging, leading to verified energy savings of approximately 25% for residents. This project underscores the durability and energy-saving potential of high-quality polymer-modified systems. Case Study 3: Concrete Repair Mortar for Industrial Flooring An automotive manufacturing plant required urgent repair of its heavily trafficked concrete flooring, which was subject to chemical spills and heavy machinery loads. A rapid-setting, high-strength repair mortar, formulated with our specific grade of redispersible emulsion powder , was chosen. The mortar achieved early strength development, allowing the factory to resume operations quickly. After two years, the repaired areas show no signs of degradation, cracking, or loss of adhesion, even under continuous industrial stress. This demonstrates the superior mechanical properties and long-term resilience imparted by our advanced polymer additives. Figure 5: Enhanced concrete durability with Redispersible Emulsion Powder. Trust & Support: FAQ, Lead Time, Warranty & Customer Service Frequently Asked Questions (FAQ) Q: What is the primary function of redispersible emulsion powder in dry-mix mortars? A: Its primary function is to enhance adhesion, flexibility, water resistance, cohesion, and workability of dry-mix mortars upon re-dispersion in water, acting as an organic binder. Q: How should redispersible powder be stored? A: It should be stored in its original, unopened packaging in a cool, dry place, protected from direct sunlight and moisture. Ideal temperature is below 30°C. Shelf life is typically 12 months under these conditions. Q: Can your VAE redispersible powder be customized for specific applications? A: Yes, absolutely. We offer extensive R&D capabilities to tailor parameters such as Tg, particle size, and hydrophobicity to meet unique formulation requirements and performance objectives. Q: Is your product environmentally friendly? A: Our VAE redispersible emulsion powder contributes to sustainable construction by enhancing durability and longevity of materials, reducing the need for frequent repairs and waste. We adhere to stringent environmental standards in our manufacturing processes. Lead Time & Fulfillment We maintain robust production capacities and an efficient supply chain to ensure timely delivery. Standard lead times for our redispersible powder products typically range from 7 to 14 business days, depending on order volume and destination. For large-scale projects or custom orders, lead times will be communicated clearly upon order confirmation. We work with reliable logistics partners to provide global distribution. Warranty Commitments Our redispersible emulsion powder products are manufactured under strict quality control, holding ISO 9001 certification. We warrant that our products meet the published technical specifications and are free from defects in material and workmanship when stored and used according to our recommendations. Any claims regarding product quality must be reported within a specified period from the date of delivery, and we commit to prompt investigation and resolution. Customer Support Our dedicated customer support team and technical experts are available to assist with product selection, formulation guidance, application advice, and troubleshooting. We offer comprehensive pre-sales consultation, during-sales support, and robust after-sales service, including technical data sheets, safety data sheets, and performance testing data. We are committed to fostering long-term partnerships through unparalleled support. References Ohama, Y. (1995). Polymer-Modified Mortars and Concretes. In Cement and Concrete Composites , 17(1), 3-15. Schroeder, F., & Hessel, K. (2014). Redispersible Polymer Powders: An Essential Component for Modern Dry Mix Mortars. In Construction and Building Materials , 69, 34-42. European Standard EN 12004: Adhesives for tiles - Requirements, evaluation of conformity, classification and designation. American Society for Testing and Materials (ASTM) Standards.

  • 40000tons
    Group_492

    Production

  • 20+years
    Group_493

    Experience

  • 5000+
    Group_494

    Acreage

Product Category
  • fiber polypropylene

    Extra time plaster additives have revolutionized the construction and renovation industry, providing a solution that allows builders and DIY enthusiasts to manage their time more efficiently without compromising on the quality of the work. This product is especially beneficial in environments where the curing time of plaster can be a challenge due to environmental factors or large-scale projects demanding a gradual pace. Understanding the mechanics of extra time plaster additives requires delving into their composition and functionality. These additives are specially formulated compounds that slow down the setting process of plaster, an indispensable trait when it comes to detailed work or complex projects. Typically, they are made from a blend of retarding agents and other ingredients that finely calibrate the setting time without degrading the plaster's structural integrity or finish quality. Experience with extra time plaster additives highlights their unparalleled utility in scenarios where timing is critical. Professional builders who undertake extended wall plastering or intricate ceiling designs frequently cite the controlled setting time as a key advantage. This feature ensures that the finishing touches can be applied meticulously, improving the overall aesthetic without the stress of the plaster hardening prematurely. Furthermore, amateur DIY enthusiasts find these additives incredibly user-friendly, as they provide the flexibility to amend or smooth over any inconsistencies in the application. From an expertise perspective, using extra time plaster additive demands a solid understanding of how to balance the additive's proportion to the volume of plaster mix. Success lies in meticulous measurement. A common guideline is to follow the manufacturer's specifications, accounting for variables like ambient temperature and humidity, which can also affect the setting time. Experienced plasterers often perform small test batches to perfect the ratio and ensure a seamless outcome that aligns with their project's demands. Authority in discussing extra time plaster additives is bolstered by the widespread adoption and endorsement from leading construction experts and organizations familiar with their significant benefits. The Construction Industry Congress repeatedly emphasizes the efficacy of these additives in minimizing plaster waste, reducing costs associated with rushed or defective work, and ensuring environmental compatibility through fewer material discards. extra time plaster additive Trustworthiness in this domain is built on transparent communication between the manufacturers and users, ensuring clarity about the components and safety of these products. Leading brands that offer extra time plaster additives invest heavily in research and development, followed by rigorous testing to validate their additives comply with industry regulations and safety standards. This ensures users can trust the product to deliver consistent, reliable results. Another aspect highlighting the significance of extra time plaster additive is its contribution to sustainable building strategies, a crucial factor in modern construction. By allowing more precise application processes and reducing material wastage, these additives align with green building practices. Some brands have introduced eco-friendly versions that further curtail the environmental impact, making them a preferred choice for environmentally-conscious projects. Moreover, user testimonials and case studies underscore the real-world benefits of these additives . One particular case describes a large corporation undertaking a massive renovation of a multi-story building where the use of extra time plaster additives was pivotal in maintaining a fair balance between efficient project completion and achieving exquisite finishes. The extension of workable time allowed for a staggered workforce and reduced manpower fatigue, ultimately enhancing the living quality of the residents without the pressure of hasty plastering. In sum, extra time plaster additives are a critical innovation in the construction industry. They provide much-needed flexibility and control over the plaster setting process, empowering both professionals and hobbyists to achieve high-quality finishes. Their integration into construction projects symbolizes not just a tool for practical advantage but also a commitment to sustainable, efficient building practices. As the industry continues to evolve, these additives will undoubtedly remain at the forefront of construction solutions.

  • hpmc connect

    Hydroxypropyl methylcellulose (HPMC) , with a concentration of 0.3%, is becoming an increasingly popular component in a range of products, due to its unique properties and versatile applications. This polymer offers extensive benefits in various industries including pharmaceuticals, cosmetics, and food production, proving its worth time and again for professionals looking to maximize product quality and performance. In the pharmaceutical realm, HPMC at a 0.3% concentration is frequently utilized as an excipient and a controlled-delivery component. Known for its excellent film-forming properties, it serves as an efficient coating agent for tablets, ensuring safe ingestion and effective delivery of medication. Furthermore, its non-toxic, non-irritant nature makes it an ideal candidate for ophthalmic solutions. Professionals in the industry often capitalize on HPMC's ability to stabilize eye drops and artificial tears, enhancing lubrication and patient comfort due to its viscoelastic properties that mimic natural tears. The precision and consistency provided by a 0.3% concentration ensure reliability in sensitive applications where efficacy and safety are paramount. HPMC's value extends beyond pharmaceuticals into the realm of cosmetics, where it plays a crucial role in product formulation. As a viscosity enhancer, it is employed in creams, lotions, and gels to achieve the desired texture and stability. Its film-forming ability further contributes by creating a protective barrier on the skin, locking in moisture, and enhancing the appearance of a smooth, hydrated complexion. Those with expertise in cosmetic formulation appreciate its versatility, as it enables the creation of products that are gentle on the skin, while still effective in delivering active ingredients. With growing consumer demand for reliable and science-backed cosmetic solutions, HPMC at a 0.3% concentration is steadily gaining traction. hydroxypropyl methylcellulose 0 3 Moreover, the food industry embraces HPMC due to its functional benefits that enhance both product texture and shelf life. As a thickening agent and stabilizer, it is utilized in processed foods, attaching importance to cleaner labels as it is recognized as a safe additive. Its capacity to improve the consistency of products such as soups, sauces, and bakery items speaks to its broad application spectrum. Food technologists value HPMC as it meets consumer expectations for natural ingredients while providing the necessary technological benefits to maintain product quality over time. Across all industries, the consistent performance of hydroxypropyl methylcellulose makes it a cornerstone in the toolkit of product developers. Its biodegradability and non-toxic profile advocate for sustainable and health-conscious production practices—a crucial consideration in today's market. By balancing technical demands with consumer preferences, HPMC at a 0.3% concentration positions itself firmly as an essential component in innovative product development. This reveals not only its utility but also its pivotal role in addressing the dynamic needs of various industries. In summary, the purposeful use of hydroxypropyl methylcellulose at 0.3% elevates product standards across multiple sectors. With its diverse functionality and proven track record, it is a reliable choice for those seeking to enhance product effectiveness while ensuring safety and consumer satisfaction. The scientific community and industry experts herald its continued relevance, solidifying its place as a trusted ingredient now and in the future.

Get Free Quote or Can call us At Our Emergency Services

+86-131-8048-6930

Our Advantage
We have three
advantages
  • Group_497

    200000 Viscosities

    Excellent product

    We can produce pure products up to 200,000 viscosities

  • Group_496

    40000 tons

    High yield

    We don’t stop production all year round, and the annual output can reach 40,000 tons

  • Frame

    24 hours

    Quality service

    We provide 24-hours online reception service, welcome to consult at any time

———— Inquiry Form

Schedule A services


If you are interested in our products, you can choose to leave your information here, and we will be in touch with you shortly.


TOP